Normalized discriminant analysis with application to a hybrid speaker-verification system

نویسندگان

  • Qi Li
  • Sarangarajan Parthasarathy
  • Aaron E. Rosenberg
  • Donald W. Tufts
چکیده

A modified linear discriminant analysis technique for speaker verification, referred to here as normalized discriminant analysis (NDA), is presented. Using this technique it is possible to design an efficient linear classifier with very limited training data and to generate normalized discriminant scores with comparable magnitudes for different classifiers. The NDA technique is applied to a classifier for speaker verification based on speaker specific information obtained when utterances are processed with speaker independent models. In experiments conducted on a network based telephone database, the NDA technique provides an equal-error rate of 6.13% while the classifier using Fisher linear discriminant analysis has an equal-error rate of 18.18%. Furthermore, when the NDA combined with HMM approach in a hybrid speaker verification system, the rate was reduced from 5.30% (HMM with cohort normalization) to 4.32%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained discriminative speaker verification specific to normalized i-vectors

This paper focuses on discriminative trainings (DT) applied to ivectors after Gaussian probabilistic linear discriminant analysis (PLDA). If DT has been successfully used with non-normalized vectors, this technique struggles to improve speaker detection when i-vectors have been first normalized, whereas the latter option has proven to achieve best performance in speaker verification. We propose...

متن کامل

Short Utterance PLDA Speaker Verification using SN-WLDA and Variance Modelling Techniques

This paper proposes a combination of source-normalized weighted linear discriminant analysis (SN-WLDA) and short utterance variance (SUV) PLDA modelling to improve the short utterance PLDA speaker verification. As short-length utterance i-vectors vary with the speaker, session variations and phonetic content of the utterance (utterance variation), a combined approach of SN-WLDA projection and S...

متن کامل

Factor analysis of mixture of auto-associative neural networks for speaker verification

This paper introduces the theory of factor analysis of the mixture of Auto-Associative Neural Networks (AANNs) with application in speaker verification. First, we formulate the problem of learning a low-dimensional subspace in part of the mixture of AANNs parameter space, and subsequently derive the update equations by minimizing loss function of the mixture. Second, we apply this technique to ...

متن کامل

Sparse Probabilistic Linear Discriminant Analysis for Speaker Verification

This paper introduces an approach based on a generative model named Sparse Probabilistic Linear Discriminant Analysis in speaker verification. The model provides an alternative approach to deal with the non-Gaussian behavior of the latent variables, directly assuming they are based on Laplace prior. This distribution encourages the model to set many latent variables to zero. An expectation-maxi...

متن کامل

Improving short utterance based i-vector speaker recognition using source and utterance-duration normalization techniques

A significant amount of speech is typically required for speaker verification system development and evaluation, especially in the presence of large intersession variability. This paper introduces a source and utterance-duration normalized linear discriminant analysis (SUN-LDA) approaches to compensate session variability in short-utterance i-vector speaker verification systems. Two variations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996